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Abstract. We view match as an operator that takes two graph-like structures
(e.g., dassifications, XML schemas) and produces a mapping between the
nodes of these graphs that correspond semantically to each other. Semantic
matching is based on two ideas: (i) we discover mappings by computing seman-
tic relations (e.g., equivaence, more general); (ii) we determine semantic rela-
tions by analyzing the meaning (concepts, not labels) which is codified in the
elements and the structures of schemas. In this paper we present basic and op-
timized agorithms for semantic matching, and we discuss their implementation
within the S-Match system. We evaluate S-Match against three state of the art
matching systems, thereby justifying empirically the strength of our approach.

1. Introduction

Match is a critical operator in many well-known metadata intensive applications, such
as schemal/ontology integration, data warehouses, data integration, e-commerce, €tc.
The match operator takes two graph-like structures and produces a mapping between
the nodes of the graphsthat correspond semantically to each other.

Many diverse solutions of match have been proposed so far, see [43,12,40,42] for
recent surveys, while some examples of individua approaches addressing the match-
ing problem can be found in [1,2,5,6,10,11,13,16,30,32,33,35,39]*.We focus on a
schema-based solution, namely a matching system exploiting only the schema infor-
mation, thus not considering instances. We follow a novel approach cdled semantic
matching [20]. This approach is based on two key ideas. The first is that we calculate
mappings between schema elements by computing semantic relations (e.g., equiva
lence, more general, digointness), ingead of computing coefficients rating match
quality in the[0,1] range, asit isthe casein most previous approaches, see, for exam-
ple, [11,13,32,39,35]. The second ideais that we determine semantic relations by ana-
lyzing the meaning (concepts, not labels) which is codified in the elements and the
structures of schemas. In particular, labels at nodes, written in natural language, are
automaticdly trandated into propositional formulas which explicitly codify the la-
bels' intended meaning. This alows us to trandate the matching problem into a pro-
positional (un)satisfiability problem, which can then be efficiently resolved using

" This articleis an expanded and updated version of an earlier conference paper [23].
1 See www.OntologyM atching.org for a complete information on the topic.
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(sound and complete) state of the art propositional satisfiability (SAT) deciders, eg.,
[31].

A vision of the semantic matching approach and some of its implementation were
reported in [20,21,25]. In contrast to these works, this paper daborates in more detail
the element level and the structure level matching agorithms, providing a complete
account of the approach. In particular, the main contributions are: (i) a new schema
matching agorithm, which builds on the advances of the previous solutions at the
element level by providing a library of element level matchers, and guarantees cor-
rectness and completeness of its results at the structure level; (ii) an extension of the
semantic matching approach for handling attributes; (iii) an evauation of the per-
formance and quality of the implemented system, called S-Match, against other state
of the art systems, which proves empirically the benefits of our approach. This article
is an expanded and updated version of an earlier conference paper [23]. Therefore,
three contributions mentioned above were originaly claimed and substantiated in
[23]. The most important extensions over [23] include a technical account of: (i) word
sense disambiguati on techniques, (ii) management of the inconsi stenciesin the match-
ing tasks, and (iii) an in-depth discussion of the optimization techniques that improve
the efficiency of the matching a gorithm.

The rest of the paper is organized as follows. Section 2 introduces the semantic
matching approach. It also provides an overview of four main steps of the semantic
matching agorithm, while Sections 3,4,5,6 are devoted to the technica details of
those steps. Section 7 discusses semantic matching with attributes. Section 8 intro-
duces the optimizations that alow improving efficiency of the basic version of the al-
gorithm. The eva uation results are presented in Section 9. Section 10 overviews the
related work. Section 11 provides some conclusions and di scusses future work.

2. Semantic Matching

In our approach, we assume that al the data and conceptual models (e.g., cassifica-
tions, database schemas, ontologies) can be generally represented as graphs (see [20]
for a detailed discussion). This alows for the statement and solution of a generic (se-
mantic) matching problem independently of specific conceptual or data models, very
much aong the lines of what is done in Cupid [32] and COMA [11]. We focus on
tree-like structures, e.g., classifications, and XML schemas. Rea-world schemas are
seldom trees, however, there are (optimized) techniques, transforming a graph repre-
sentation of a schema into atree representation, e.g., the graph-to-tree operator of Pro-
toplasm [7]. From now on we assume that a graph-to-tree transformation can be done
by using existing systems, and therefore, we focus on other issuesinstead.
The semantic matching approach is based on two key notions, namely:
- Concept of a label, which denotes the set of documents (data instances) that
one would classify under alabel it encodes;
- Concept at a node, which denotes the set of documents (data instances) that
one would classify under a node, given that it has a certain label and that it is
in acertain position in atree.



Our approach can discover the following semantic relations between the concepts
at nodes of two schemas: equivalence (=); more general (Z); less general (&); dis-
jointness (). When none of the relations holds, the special idk (I do not know) 2 rela-
tion is returned. The relations are ordered according to decreasing binding strength,
i.e., from the strongest (=) to the weakest (idk), with more general and less general re-
lations having equal binding power. The semantics of the above relations are the ob-
vious set-theoretic semantics.

A mapping element is a4-tupledD;j, &, by, R i =1,...,Na; j =1,...,Ng Where ID;jisa
unique identifier of the given mapping eement; g isthei-th node of the first tree, Na
is the number of nodes in the first treg; by is the j-th node of the second tree, Ng isthe
number of nodes in the second tree; and R specifies a semantic relation which may
hold between the concepts at nodes & and b;. Semantic matching can then be defined
as the following problem: given two trees T, and Tz compute the N4 x Ng mapping
eements 4Dy, &, by, RE with & T Ta, i=1,..., Na; by T Tg, j =1,..., Ng; and Reis the
strongest semantic relation holding between the concepts at nodes & and by;. Notice
that the strongest semantic relation aways exists since, when holding together, more
genera and less general relations are equivalent to equivalence. Finally, since we look
for the Na x Np correspondences, the cardinality of mapping elements we are able to
determineis 1:N. Also, these, if necessary, can be decomposed strai ghtforwardly into
mapping el ements with the 1:1 cardindlity.

Let us summarize the algorithm for semantic matching via arunning example. We
consider small academic courses classifications shown in Figure 1.

1= Courses Classes =1
A 2= Biology. Zoology and Botany Mechanics, Optics and Thermodynamics =2 B
5 - Neurobiology. Genetics and Physiology Statics, Dynamics and Kinematics 5
3= College of Arts and Sciences College of Arts and Sciences =13
6 - Earth and Atmospheric Sciences English 6
7 - AsianlLanguages Earth Sciences except Geology 7
8  Math Macroeconomics 8
9  Social Science Microeconomics 9
10 - Economics Asian Languages 10
4= History Mathematics 11
11/= European History Statistics 12
15 Ancient_Modemn History_and_Philosophy_of_Science 13
12/= Medieval History =4
16 Asia Modemn =14
13 - Sites and Monuments Europe 17
14.= Medieval Renaissance Ancient and Medieval 15
17 Modein History of Asia 16

Fig. 1. Parts of two classifications devoted to academic courses

Let us introduce some notation (see also Figure 1). Numbers are the unique identi-
fiers of nodes. We use "C" for concepts of labels and concepts at nodes. Thus, for ex-

2 Notice idk is an explicit statement that the system is unable to compute any of the declared
(four) relations. This should be interpreted as either there is not enough background knowledge,
and therefore, the system cannot explicitly compute any of the declared relations or, indeed,
none of those relations hold according to an application.



ample, in the tree A, Cuigory and C,4 are, respectively, the concept of the label History
and the concept a node 4. Also, to smplify the presentation, whenever it is clear from
the context we assume that the concept of a labd can be represented by the labd it-
self. In this case, for example, Chisiory becomes denoted as History. Finally, we some-
times use subscripts to distinguish between trees in which the given concept of a label
occurs. For instance, History,, means that the concept of the label History belongsto
thetree A.

The algorithm takes as input two schemas and computes as output a set of map-
ping elements in four macro steps:

- Sep 1: for al labels L in two trees, compute concepts of labels, C,.
- Sep 2: for all nodes N in two trees, compute concepts at nodes, Cy.
- Sep 3: for al pairsof labels in two trees, compute relations among C.’s.
- Sep 4 for dl pairsof nodesin two trees, compute relations among Cy's.

The first two steps represent the preprocessing phase, while the third and the
fourth steps are the element level and structure level matching respectivelys. It isim-
portant to notice that Sep 1 and Sep 2 can be done once, independently of the spe-
cific matching problem. Step 3 and Step 4 can only be done at run time, once the two
trees which must be matched have been chosen. We a so refer in the remainder of the
paper to the element level matching (Sep 3) as label matching and to the structure
level matching (Step 4) as node matching.

We view labels of nodes as concise descriptions of the data that is stored under the
nodes. During Step 1, we compute the meaning of a label at a node (in isolation) by
taking as input a label, by analyzing its red-world semantics (eg., using WordNet
[37]4), and by returning as output a concept of the label. Thus, for example, by writ-
ing Chisory We move from the natural language ambiguous label History to the concept
Chistorys Which codifies explicitly its intended meaning, namely the data (documents)
which are about history.

During Step 2 we analyze the meaning of the positions that the labels of nodes
have in atree. By doing this we extend concepts of |abels to concepts at nodes. Thisis
required to capture the knowledge residing in the structure of a tree, namely the con-
text in which the given concept of label occurs [17]. Thus, for example, in the tree A,
when we write C, we mean the concept describing al the documents of the (aca
demic) courses, which are about history.

Sep 3 is concerned with acquisition of “world” knowledge. Relations between
concepts of labels are computed with the help of a library of element level semantic
matchers. These matcherstake as input two concepts of labels and produce as output a
semantic relation (e.g., equivalence, more/less general) between them. For example,
from WordNet [37] we can derive that course and class are synonyms, and therefore,

Ceourses = Coasses:

3 Element level matching (techniques) compute mapping elements by analyzing schema entities
in isolation, ignoring their relations with other entities. Structure-level techniques compute
mapping elements by analyzing how schema entities appear together in a structure, see for
more details [43,43].

4 WordNet is alexical database for English. It is based on synsets (or senses), namely structures
containing sets of terms with synonymous meanings.



Sep 4 is concerned with the computation of the relations between concepts at
nodes. This problem cannot be resolved by exploiting static knowledge sources only.
We have (from Step 3) background knowledge, codified as a set of relations between
concepts of labels occurring in two trees. This knowledge constitutes the background
theory (axioms) within which we reason. We need to find a semantic relation (e.g.,
equivalence, more/less general) between the concepts at any two nodes in two trees.
However, these are usually complex concepts obtained by suitably combining the cor-
responding concepts of labds. For example, suppose we want to find a relation be-
tween C, in thetree A (which, intuitively, stands for the concept of courses of history)
and C, inthetree B (which, intuitively, stands for the concept of classes of history). In
this case, we should redize that they have the same extension, and therefore, that they
are equivalent.

3. Step 1: Concepts of Labels Computation

Technicaly, the main goa of Sep 1 is to automaticdly translate ambiguous natural
language labels taken from the schema elements’ names into an internal logical lan-
guage. We use a propositional description logic language® (L) for several reasons.
Firgt, given its set-theoretic interpretation, it “maps’ naturaly to the real world se-
mantics. Second, natural language labels, e.g., in classifications, are usually short ex-
pressions or phrases having smple structure. These phrases can often be converted
into aformulain L with no or little loss of meaning [18]. Third, aformulain L® can
be converted into an equivaent formula in a propositional logic language with boo-
lean semantics. Apart from the atomic propositions, the language L includes logical
operators, such as conjunction (£/), digunction (/7), and negation (@). There are dso
comparison operators, namely more general (=), less general (&), and equivalence
(=). Theinterpretation of these operatorsisthe standard set-theoretic interpretation.
We compute concepts of labels according to the following four logical phases, be-

ing inspired by the work in [32].

1. Tokenization. Labels of nodes are parsed into tokens by a tokenizer which recog-
nizes punctuation, cases, digits, stop characters, etc. Thus, for instance, the label
History and Philosophy of Science becomes dhistory, and, philosophy, of, sciencefi
The multiword concepts are then recognized. At the moment the list of al multi-
word concepts in WordNet [37] is exploited here together with a heuristic which
takes into account the natural language connectives, such as and, or, etc. For ex-
ample, Earth and Atmospheric Sciences becomes &earth sciences, and, atmos-
pheric, sciencesii snce WordNet contains senses for earth sciences, but not for at-
mospheric sciences.

2. Lemmatization. Tokens of labels are further lemmatized, namely they are morpho-
logically analyzed in order to find al their possible basic forms. Thus, for ingtance,

5 A propositional description logic language (L) we use here is the description logic ALC lan-
guage without the role constructor, see for more details [4]. Note, since we do not useroles, in
practice we graightforwardly translate the natural language labels into propositional logic for-
mulas.



sciences is associated with its singular form, science. Also here we discard from
further considerations some pre-defined meaningless (in the sense of being useful
for matching) words, articles, numbers, and so on.

3. Building atomic concepts. WordNet is queried to obtain the senses of lemmas iden-
tified during the previous phase. For example, the label Sciences has the only one
token sciences, and one lemma science. From WordNet we find out that science
has two senses as a noun.

4. Building complex concepts. When existing, all tokens that are prepositions, punc-
tuation marks, conjunctions (or strings with similar roles) aretrandated into logica
connectives and used to build complex concepts out of the atomic concepts con-
structed in the previous phase. Thus, for ingance, commas and conjunctions are
trandated into logical disunctions, prepositions, such as of and in, are trandated
into logical conjunctions, and words like except, without are trandated into nega-
tions. Thus, for example, the concept of labd History and Philosophy of Scienceis
CompUted as CHistory and Philosophy of Science = (CHistoryU CPhiIosophy)/7 CScience' where
Caiience = 88CiENCE, {SENSes#2} M is taken to be the union of two WordNet senses,
and similarly for history and philosophy. Natice that natura language and is con-
verted into logical digunction, rather than into conjunction (see [34] for detailed
discussion and justification for this choice).

Theresult of Sep 1 isthelogical formulafor concept of label. It is computed as a full
propositional formulawere literals stand for atomic concepts of labels.

In Figure 2 we present the pseudo-code which provides an agorithmic account of
how concepts of labels are built. In particular, the bui | dCLab function takes the
tree of nodes cont ext and constructs concepts of labels for each node in the tree.
The nodes are preprocessed in the main loop in lines 220-350. Within this loop, first,
the node label is obtained in line 240. Then, it is tokenized and lemmatized in lines
250 and 260, respectively. The (internal) loop on the lemmas of the node (lines 270-
340) starts from stop words test in line 280. Then, WordNet is queried. If the lemma
isin WordNet, its senses are extracted. In line 300, atomic concept of labd is created
and atached to the node by the addACOLt oNode function. In the case when Word-
Net returns no senses for the lemma, the specia identifier SENSES _NOT_FOUND is
attached to the atomic concept of label®. The propositiona formula for the concept of
label is iteratively constructed by const r uct cLabFor nul a (line 340). Findly,
the logical formulais attached to the concept at label (line 350) and some sense filter-
ing is performed by el enent Level SenseFi |l tering’.

6 This identifier is further used by element level semantic matchers in Sep 3 of the matching
algorithm in order to determine the fact that the label (lemma) under consideration is not con-
tained in WordNet, and therefore, there are no sensesin WordNet for a given concept.

7 The sense filtering problem is aso known under the name of word sense disambiguation
(WSD), seg, e.g., [29].



Node struct of

i nt nodel d;

String |abel

String clLabel

String cNode

At om cConcept At Label [] ACCLs;
At om cConcept Of Label struct of

int id,

String token

String[] wnSenses
200. void buil dCLab(Tree of Nodes context)
210. String[] wnSenses
220. For each node in context

230. String cLabFormul a="";

240. String nodelLabel =get Label (node);

250. String[] tokens=tokenize(nodelLabel);

260. String[] | emmas=l enati ze(t okens);

270. For each lemma in | enmas

280. if (isMeaningful (I enm))

290. if (lislnWrdnet(lenm))

300. addACOLt oNode( node, | enma, SENSES_NOT_FOUND) ;
310. el se

320. wnSenses= get WNSenses(t oken);

330. addACOLt oNode( hode, | emmm, wnSenses);

340. cLabFor mul a=const ruct cLabFor nul a( cLabFormul a, | enmm) ;
350. set cLabFor nul a( node, cLabFormul a);

360. el enent Level SenseFil tering(node);

Fig. 2. Concept of label construction pseudo code

The pseudo code in Figure 3 illustrates the sense filtering technique. It is used in
order to filter out the irrdlevant (for the given matching task) senses from concepts of
labels. In particular, we look whether the senses of atomic concepts of labels within
each concept of alabel are connected by any relation in WordNet. If so, we discard all
other senses from atomic concept of label. Otherwise we keep al the senses. For ex-
ample, for the concept of label Stes and Monuments before the sense filtering step we
have &tes, {sensesw#4}fL/avionuments, {sensesy#3}fi Since the second sense of
monument is a hyponym to the first sense of site, notationally Monument#2 = Stet#l,
all the other senses are discarded. Therefore, as aresult of this sense filtering step we
have &Sites, {sensesy#1}fL/avionuments, {senses#1} i

el enent Level SenseFi | t eri ng takes the node structure as input and dis-
cards the irrdlevant senses from atomic concepts of labels within the node. In particu-
lar, it executes two loops on atomic concept of labels (lines 30-120 and 50-120).
WordNet senses for the concepts are acquired in lines 40 and 70. Then two loops on
the WordNet senses are executed in lines 80-120 and 90-120. Afterwards, checking
whether the senses are connected by a WordNet relation is performed in line 100. If
so, the senses are added to a special set, caled refined senses set (lines 110, 120). Fi-
nally, the WordNet senses are replaced with the refined senses by saveRef i ned-
Senses.




10. voi d el enent Level SenseFi | t eri ng(Node node)

20. Atom cConcept Of Label [] nodeACOLs=get ACOLs( node) ;
30. for each nodeACOL in nodeACOLs

40. String[] nodeVWNSenses=get WNSenses(nodeACOL) ;
50. for each ACOL in nodeACOLs

60. if (ACOL! =nodeACQL)

70. String[] wnSenses=get WNSenses(ACQL) ;

80. for each nodeWNSense in nodeWNSenses

90. for each wnSense in wnSenses

100. if (isConnectedbyWN(nodeWNSense, focusNodeWNSense))
110. addToRef i nedSenses( nodeACOL, nodeVWSense) ;

120. addToRef i nedSenses(f ocusNodeACOL, focusNodeWNSense);
130. saveRef i nedSenses(context);

140. void saveRefi nedSenses(cont ext)

150. for each node in context

160. At omi cConcept Of Label [] nodeACOLs=get ACOLs( node) ;
170. for each nodeACOL in NodeACOLs

180. i f (hasRefinedSenses(nodeACOL))

190. //replace original senses with refined

Fig. 3. The pseudo code of element level sense filtering technique

4. Step 2: Concepts at Nodes Computation

Concepts at nodes are written in the same propositional description logic language as
concepts of labds. Classifications and XML schemas are hierarchical structures
where the path from the root to a node uniquely identifies that node (and also its
meaning). Thus, following an access criterion semantics [26], the logical formula for
a concept at node is defined as a conjunction of concepts of labels located in the path
from the given node to the root. For example, inthe tree A, the concept at node four is
computed as follows: C4= Ccourses /7 Chiistory-

Further in the paper we require the concepts at nodes to be consistent (satisfiable).
The reasons for their inconsistency are negations in atomic concepts of labels. For ex-
ample, natural language label except_geology is trandated into the following logica
formula Cecept_geology =DCgeoiogy- Therefore, there can be a concept at node represented
by a formula of the following type Cyeiogy /7.../7D Cgeoiogy: Which is inconsistent. In
this case the user is notified that the concept at node formula is unsatisfiable and
asked to decide a more important branch, i.e., ()he can choose what to delete from
the tree, namely Cyeqiogy OF Cexcept_geology- NOtiCe that this does not sacrifice the system
performance since this check is made within the preprocessing (i.e., off-line, when the
tree is edited)®. Let us consider the following example: Cy = ... /7Cwvedieva /7Chmodern.
Here, concept at node formula contains two concepts of labels, which are as from
WordNet digoint. Intuitively, this means that the context talks about either Medieval

8 In general case the reasoning is as costly as in the case of propositional logic (i.e., deciding
unsatisfiability of the concept is co-NP hard). In many real world cases (see [25] for more de-
tails) the corresponding formulais Horn. Thus, its satisfiability can be decided in linear time.



or Modern (or thereisimplicit digunction in the concept at node formula). Therefore,
in such cases, the formula for concept at node is rewritten in the following way:
Cn =(Cwmedieval £/ Criodern) /7.

The pseudo code of the second step is presented in Figure 4. The bui | dCNode
function takes as an input the tree of nodes with precomputed concepts of labels and
computes as output the concept at node for each node in the tree. The sense filtering
(line 620) isperformed by st r uct ur eLevel SenseFi | t eri ng in the way simi-
lar to the sensefiltering approach used at the dement level (as discussed in Figure 3).
Then, the formula for the concept a node is constructed within bui | dcNodeFor -
nmul a as conjunction of concepts of labels attached to the nodes in the path to the
root. Finally, the formulais checked for unsatisfiability (line 640). If so, user is asked
about the possible modifications in the tree structure or they are applied automati-
caly, specificaly implicit digunctions are added between digoint concepts (line
650).

600. void buil dCNode(Tree of Node context)
610. for each node in context

620. structurelLevel SenseFiltering (node, context);

630. String cNodeForrmul a= bui | dcNodeFormul a (node, context);
640. if (isUnsatisifiable(cNodeFornula))

650. updat eFor mul a( cNodeFor mul a) ;

Fig. 4. Concepts at nodes construction pseudo code

Let us discuss how the structure level sense filtering operates. As noticed before,
this technique is smilar to the one described in Figure 3. The major differenceis that
the senses now are filtered not within the node label but within the tree structure. For
all concepts of labels we collect al their ancestors and descendants. We call them a
focus set. Then, all WordNet senses of atomic concepts of labels from the focus set
are compared with the senses of the atomic concepts of labes of the concept. If a
sense of atomic concept of labe is connected by a WordNet relation with the sense
taken from the focus set, then all other senses of these atomic concepts of labels are
discarded. Therefore, as a result of sense filtering step we have (i) the WordNet
senses which are connected with any other WordNet senses in the focus set or (ii) all
the WordNet senses otherwise. After this step the meaning of concept of labelsis rec-
onciled with respect to the knowledge residing in the tree structure. The pseudo code
in Figure 5 provides an agorithmic account of the structure level sense filtering pro-
cedure.

Thestruct urelLevel SenseFi | t eri ng function takes a node and a tree of
nodes as input and refines the WordNet senses within atomic concepts of labelsin the
node with respect to the tree structure. First, atomic concepts at |abels from the ances-
tor and descendant nodes are gathered into the focus set (line 420). Then, a search for
pairwise relations between the senses attached to the atomic concepts of labels is per-
formed (lines 440-520). These senses are added to the refined senses set (lines 530-
540) and further saveRef i nedSenses from Figure 3 is applied (line 550) in order
to save the refined senses.

400.voi d structurelLevel SenseFiltering (Node node, Tree of Nodes context)



410. Atom cConcept Of Label [] focusNodeACOLs;

420. Node[] focusNodes=get FocusNodes(node, context);
430. Atoni cConcept Of Label [] nodeACOLs=get ACOLs( hode) ;
440. for each nodeACOL in nodeACOLss

450. String[] nodeVWNSenses=get WNSenses(nodeACOL) ;

460. for each nodeWNSense in nodeWNSenses

470. for each focusNode in focusNodes

480. f ocusNodeACOLs=get ACOLs( f ocusNode) ;

490. for each focusNodeACOL in focusNodeACOLs

500. String[] fNodeWNSenses=get WNSenses(focusNodeACOL) ;

510. for each fNodeWNSense in nodeWNSenses

520. i f (isConnectedbyWN(nodeWNSense, fNodeWNSense))

530. addToRef i nedSenses(nodeACOL, nodeV\WNSense) ;

540. addToRef i nedSenses(f ocusNodeACOL, focusNodeWNSense) ;

550. saveRefi nedSenses(context);

Fig. 5. The pseudo code of structure level sense filtering technique

5. Step 3: Label Matching

5.1 A library of label matchers

Relations between concepts of labds are computed with the help of a library of de-
ment level semantic matchers [24]. These matchers take as input two atomic concepts
of labels and produce as output a semantic relation between them. Some of them are
re-implementations of well-known matchers used in Cupid [32] and COMA [11]. The
most important difference is that our matchers ultimately return a semantic relation,
rather than an affinity level in the [0,1] range, although sometimes using customizable
thresholds.

Our label matchers are briefly summarized in Table 1. The first column contains
the names of the matchers. The second column lists the order in which they are exe-
cuted. The third column introduces the matchers' approximation level. The relations
produced by a matcher with the first approximation level are always correct. For ex-
ample, name = brand as returned by WordNet. In fact, according to WordNet nameis
a hypernym (superordinate word) to brand. Notice that name has 15 senses and brand
has 9 senses in WordNet. We use sense filtering techniques to discard the irrelevant
senses, see Sections 3 and 4 for details. The relations produced by a matcher with the
second approximation level are likely to be correct (e.g., net = network, but hot = ho-
tel by Prefix). The relations produced by a matcher with the third approximation level
depend heavily on the context of the matching task (e.g., cat = dog by Extended gloss
comparison in the sense that they are both pets). Note, matchers by default are exe-
cuted following the order of increasing approximation level. The fourth column re-
portsthe matchers' type. Thefifth column describes the matchers' input.

Table 1. Element level semantic matchers implemented so far.

Matcher name | Execution | Approximation | Matcher type| Schema info |




Order level
Prefix 2 2
Suffix 3 2
Edit distance 4 2 String-based Labdls
N-gram 5 2
Text Corpus 13 3 Labels+ Corpus
- \Norngt 1 L Sense-based WordNet senses
Hierarchy distance 6 3
WordNet Gloss 7 3
Extended WordNet Gloss 8 3
Gloss Comparison 9 3
Extended Gloss Comparison 10 3 Gloss-based WordNet senses
Semantic Gloss Comparison 11 3
Extended sema_ntic gloss com- 12 3
parison

We have three main categories of matchers. dring-, sense- and gloss- based
matchers. String-based matchers exploit string comparison techniquesin order to pro-
duce the semantic relation, while sense-based exploit the structural properties of the
WordNet hierarchies and gloss-based compare two textual descriptions (glosses) of
WordNet senses. Below, we discuss in detail some matchers from each of these cate-
gories.

5.1.1 Sense-based matchers
We have two sense-based matchers. Let us discuss how the WordNet matcher works.
As it was already mentioned, WordNet [37] is based on synsets (or senses), namely
structures containing sets of terms with synonymous meanings. For example, the
words night, nighttime and dark constitute a single synset. Synsets are connected to
one another through explicit (lexical) semantic relations. Some of these relations (hy-
pernymy, hyponymy for nouns and hypernymy and troponymy for verbs) constitute
kind-of and part-of (holonymy and meronymy for nouns) hierarchies. For instance,
treeisakind of plant. Thus, tree is hyponym of plant and plant is hypernym of tree.
Analogousdly, from trunk being a part of tree we have that trunk is meronym of tree
and treeis holonym of trunk.
The WordNet matcher translates the relations provided by WordNet to semantic re-
lations according to the following rules:
- A £ B, if A isahyponym, meronym or troponym of B;
- A I B, if A isahypernym or holonym of B;
- A =B, if they are connected by synonymy relation or they belong to one synset
(night and nighttime from the exampl e above);
- A B, if they are connected by antonymy relation or they are the siblings in the
part of hierarchy.

5.1.2 String-based matchers

We have five string-based matchers. Let us discuss how the Edit distance matcher
works. It calculates the number of simple editing operations (delete, insert and re-
place) over the label’s characters needed to transform one string into another, normal-
ized by the length of the longest string. Theresult isavaluein [0,1]. If the value ex-



ceeds a given threshold (0.6 by default) the equivalence rdation is returned, other-
wise, Idk is produced.

5.1.3 Gloss-based matchers

We have six gloss-based matchers. Let us discuss how the Gloss comparison matcher
works. The basic idea behind this matcher is that the number of the same words oc-
curring in the two WordNet glosses increases the similarity value. The equivaencere-
lation is returned if the number of shared words exceeds a given threshold (e.g., 3).
Idk is produced otherwise. For example, suppose we want to match Afghan hound and
Maltese dog using the gloss comparison strategy. Natice, although these two concepts
are breeds of dog, WordNet does not have adirect lexical relation between them, thus
the WordNet matcher would fail in this case. However, the glosses of both concepts
are very similar. Maltese dog is defined as a breed of toy dogs having a long straight
silky white coat. Afghan hound is defined as a tall graceful breed of hound with a long
silky coat; native to the Near East. There are 4 shared words in both glosses, namely
breed, long, silky, coat. Hence, the two concepts are taken to be equiva ent.

5.2 The label matching algorithm

The pseudo code implementing Step 3 is presented in Figure 6. The labd matching
algorithm produces (with the help of matchers of Table 1) a matrix of relations be-
tween al the pairs of atomic concepts of labels from both trees.

700. String[][] fill CLabMatrix(Tree of Nodes source,target);
710. String[][]cLabsMatri x;

720. String[] matchers;

730. int i,j;

740. mat cher s=get Mat chers();

750. for each sourceAtoni cConcept Of Label in source

760. i =get ACoLI D( sour ceAt om cConcept Of Label ) ;
770. for each targetAtoni cConcept Of Label in target
780. j = get ACoLI D(t ar get At om cConcept Of Label ) ;

790. cLabsMatrix[i][j]=getRel ati on(matchers,

sour ceAt onmi cConcept O Label , t ar get At oni cConcept O Label ) ;
795. return cLabsMatrix
800. String getRelation(String[] matchers,

At om cConcept Of Label source, target)

810. String matcher;
820. String relation="1dk”;
830. int i=0;
840. while ((i<sizeof(mtchers))&&(relation=="1dk”))

850. mat cher = mat chers[i];
860. rel ati on=execut eMat cher (nat cher, source, target);
870. i+,

880. return relation;

Fig. 6. Label matching pseudo code




fill CLabMatri x takes as input two trees of nodes. It produces as output the
matrix of semantic relations holding between the atomic concepts of labels in both
trees. First, the element level matchers of Table 1, which are to be executed (based on
the configuration settings), are acquired in line 740. Then, for each pair of atomic
concepts of labels in both trees, semantic relations holding between them are deter-
mined by using the get Rel at i on function (line 790).

get Rel at i on takesasinput an array of mat cher s and two atomic concepts of
labels. It returns the semantic relation holding between this pair of atomic concepts of
labels according to the element level matchers. These label matchers are executed
(line 860) until the semantic relation different from Idk is produced. Notice that exe-
cution order is defined by the mat cher s array.

The result of Sep 3 isamatrix of the relations holding between atomic concepts of
labels. A part of thismatrix for the examplein Figure 1 is shown in Table 2.

Table2. cLabsMat ri x: matrix of relations among the atomic concepts of labels.

A B Classes History Modern Europe
Courses = idk idk idk
History idk = idk idk
Medieval idk idk A idk

Asia idk idk idk A

6. Step 4: Node M atching

During this step, we initially reformulate the tree matching problem into a set of node
matching problems (one problem for each pair of nodes). Finally, we trandate each
node matching problem into a propositional validity problem. Let us first discussin
detail the tree matching a gorithm. Then, we consider the node matching a gorithm.

6.1 Thetree matching algorithm

The tree matching agorithm is concerned with decomposition of the tree matching
task into a set of node matching tasks. It takes as input two preprocessed trees ob-
tained as aresult of Seps 1,2 and a matrix of semantic relations holding between the
atomic concepts of labels in both trees obtained as a result of Sep 3. It produces as
output the matrix of semantic relations holding between concepts at nodes in both
trees. The pseudo code in Figure 7 illustrates the tree matching a gorithm.



900. String[][] treeMatch(Tree of Nodes source, target, String[][]
cLabsMatri x)

910. Node sourceNode, t ar get Node;

920. String[][]cNodesMatrix, rel Matrix;

930. String axi ons, context,a contexteg;

940. int i,j;
960. For each sourceNode in source
970. i =get Nodel d( sour ceNode) ;

980. cont ext a=get CnodeFor nmul a (sourceNode);
990. For each targetNode in target

1000. j =get Nodel d(t ar get Node) ;
1010. cont ext g=get CnodeFor mul a (tar get Node) ;
1020. rel Matrix=extractRel Matri x(cLabsMatri x, sourceNode,
t ar get Node) ;
1030. axi oms=nkAxi ons(rel Matrix);
1040. cNodesMatri x[i][]j]=nodeMat ch(axi oms, cont ext 5, cont extg);

1050. return cNodesMatri x;

Fig. 7. The pseudo code of the tree matching a gorithm

t r eeMat ch takestwo trees of Nodes (sour ce andt ar get ) and the matrix of
relations holding between atomic concepts of labes (cLabsMat ri x) as input. It
starts from two loops over al the nodes of source and target trees in lines 960-1040
and 990-1040. The node matching problems are constructed within these loops. For
each node matching problem we take a pair of propositiona formulas encoding con-
cepts at nodes and relevant relations holding between the atomic concepts of labes
using the get CnodeFor mul a and ext r act Rel Mat ri x functions respectively.
The former are memorized as cont ext ,and cont ext gin lines 980 and 1010. The
latter are memorized in r el Mat ri x in line 1020. In order to reason about relations
between concepts at nodes, we build the premises (axi ons) in line 1030. These are a
conjunction of the concepts of labels which arerelated inr el Mat ri x. For example,
the semantic relations in Table 2, which are considered when we match C, in the tree
A and C, in the tree B are Classesg = Courses, and Historyg = Historya. In this case
axioms is (Classess « Coursesy)U(Historys « History,). Finaly, in line 1040, the
semantic relations holding between the concepts at nodes are calculated by node-
Mat ch and are reported as a bidimensional array (cNodesMat ri x). A part of this
matrix for the example in Figure 1 is shown in Table 3.

Table 3. cNodesMat ri x: matrix of relations among the concepts at nodes (match-
ing result).

A B C C4 Cua Cir
G = = = =
Cs = = =) =)
C12 /= /= 7\ N
C16 /= /= 7\ N




6.2 The node matching algorithm

Each node matching problem is converted into a propositional validity problem. Se-
mantic relations are translated into propositional connectives using the rules described
in Table 4 (second column).

Table 4. The relationship between semantic relations and propositional formulas.

rel(a,b) _Translation_ (_)f rel(a, t_)) Tra_lnslal_ion of Eq. 2into
into propositional logic Conjunctive Normal Form
a=b a< b N/A
ach a®b axiomsJcontext,U @contexty
azZb b® a axiomsJcontextgU @context,
a‘b @(alb) axiomsJcontext,U contextgs

The criterion for determining whether arelation holds between concepts of nodes
is the fact that it is entailed by the premises. Thus, we have to prove that the following
formula:

(axioms) ® rel(context,, contexts), (1)

is valid, namely that it is true for al the truth assignments of al the propositional
variables occurring in it. axioms, contexta, and contextz are as defined in the tree
matching agorithm. rel is the semantic relation that we want to prove holding be-
tween context, and contexts. The algorithm checks the validity of Eqg. 1 by proving
that its negation, i.e,, Eq. 2, isunsatisfiable.

axioms U@ rel (context,, contextg ) 2)

Table 4 (third column) describes how Eq. 2 istrandated before testing each seman-
tic relation. Natice that Eq. 2 is in Conjunctive Normal Form (CNF), namely it is a
conjunction of disjunctions of atomic formulas. The check for equivaence is omitted
in Table 4, since A=B holds if and only if ACB and A=B hold, i.e, both axi-
omsUcontext,U @contexts. and axiomsUcontextsU @context, are unsatisfiable
formulas.

We assume the labd's of nodes and the knowledge derived from element level se-
mantic matchers to be all globally consistent. Under this assumption the only reason
why we get an unsatisfiable formula is because we have found a match between two
nodes. In fact, axioms cannot be inconsistent by construction. Consistency of contexta
and contextg is checked in the preprocessing phase (see, Section 4 for details). How-
ever, axioms and contexts (for example, axiomsUcontexta) can be mutually inconsis-
tent. The situation occurs, for example, when axioms entails negation of the variable
occurring in the context. In this case, the concepts at nodes are digoint. In order to
guarantee the correct behavior of the algorithm we perform the digointness test first.
It does not influence the algorithm correctness in genera but alow us to obtain the
correct result in this specia case.

Let us consider the pseudo code of a basic node matching algorithm, see Figure 8.
In line 1110, nodeMat ch constructs the formula for testing digointness. In line
1120, it converts the formulainto CNF, while in line 1130 it checks the CNF formula
for unsatisfiability. If the formulais unsatisfiable the digointnessrelation is returned.



Then, the process is repeated for the less and more genera relations. If both rela
tions hold, then the equivalence relation isreturned (line 1220). If al the tests fail, the
idk relation is returned (line 1280). In order to check the unsatisfiability of a proposi-
tional formula in a basic version of our NodeMat ch algorithm we use the standard
DPLL-based SAT solver [31].

1100. String nodeMatch(String axions, contexta contextg)
1110. formul a= And(axi onms, context,, contextg);

1120. formul al nCNF=convert ToCNF(formul a) ;

1130. bool ean i sOpposite= isUnsati sfiabl e(fornulal nCNF);
1140. if (isOpposite)

1150. return “7;

1160. String fornmul a=And(axi ons, cont ext 5, Not (contextg));
1170. String formul al nCNF=convert ToCNF(f ormul a) ;

1180. bool ean i sLG=i sUnsati sfi abl e(for nmul al nCNF)

1190. formul a=And(axi oms, Not (context,), contextg);

1200. formul al nCNF=convert ToCNF(formul a) ;

1210. bool ean i sMG= isUnsati sfiabl e(formnmulal nCNF) ;

1220. if (isMG && isLQ

1230. return “=7;
1240. if (isLQ

1250. return “&7;
1260. if (isM3
1270. return “=;

1280. return “ldk~;
Fig. 8. The pseudo code of the node matching algorithm

From the examplein Figure 1, trying to prove that C4 in thetree B isless genera
than C, in the tree A, requires constructing the following formula:

((Classesg «  Coursesy)U(Historys «  Historya)) U
(ClassessUHistoryg) U@ (Courses,UHistory,)
The above formulaturns out to be unsatisfiable, and therefore, the less genera re-
lation holds. Notice, if wetest for the more genera relation between the same pair of
concepts at nodes, the corresponding formula would be also unsatisfiable. Thus, the

final relation retuned by the NodeMat ch agorithm for the given pair of concepts at
nodesis the equivaence.

7. Semantic M atching with Attributes

So far we have focused on classifications, which are simple class hierarchies. If we
deal with, e.g., XML schemas, their elements may have attributes, see Figure 9.



1=-U3 Flectronics Electronics E[) =1

A 2- 2 Photo_and_Cameras Cameras_and_Photo & =2 B
3 - [@ PID:string Digital_Cameras 3
4 [ Name:string ID:int@ 4
5 [l Quantity :positivelnteger Brand:string il - 5
6 - [l Price :double Amount:int 6
Pricefloatfil - 7

Fig.9. Two simple XML schemas

Attributes are dattribute-name, typefi pairs associated with elements. Names for
the attributes are usually chosen such that they describe the roles played by the do-
mains in order to ease distinguishing between their different uses. For example, in the
tree A, the attributes PID and Name are defined on the same domain string, but their
intended use are the internal (unique) product identification and representation of the
official products names, respectively. There are no strict rules telling us when data
should be represented as elements, or as attributes, and obvioudy there is aways
more than one way to encode the same data. For example, in the tree A, PIDs are en-
coded as strings, while in the tree B, IDs are encoded as ints. However, both attributes
serve for the same purpose of the unique products’ identification. These observations
suggest two possible ways to perform semantic matching with attributes: (i) taking
into account datatypes, and (ii) ignoring datatypes.

The semantic matching approach is based on the idea of matching concepts, not
their direct physical implementations, such as elements or attributes. If names of at-
tributes and elements are abstract entities, therefore, they alow for building arbitrary
concepts out of them. Instead, datatypes, being concrete entities, are limited in this
sense. Thus, a plausible way to match attributes using the semantic matching ap-
proach isto discard the information about datatypes. In order to support this claim, let
us consider both casesin turn.

7.1 Exploiting datatypes

In order to reason with datatypes we have created a datatype ontology, Op, specified
in OWL [45]. It describes the most often used XML schema built-in datatypes and re-
lations between them. The backbone taxonomy of Op is based on the fallowing rule:
the is-a relationship holds between two datatypes if and only if their value spaces are
related by set inclusion. Some examples of axioms of Op are: float & double, int »
string, anyURI < string, and so on. Let us discuss how datatypes are plugged within
the four macro steps of the a gorithm.

Seps 1,2. Compute concepts of labels and nodes. In order to handle attributes, we ex-
tend propositional description logics with the quantification construct and datatypes.
Thus, we compute concepts of labels and concepts at nodes as formulas in the de-
scription logics ALC(D) language [38]. For example, in the tree A in Figure 9, C,,
namely, the concept at node describing al the string data instances which are the
names of eectronic photography products is encoded as follows: Electronicsy 77
(Photo, /7Camerasy)/7$Namex.string.



Sep 3. Compute relations among concepts of labels. In this step we extend our library
of dement level matchers by adding a Datatype matcher. It takes as input two
datatypes, it queries Op and retrieves a semantic relation between them. For example,
from axioms of Op, the Datatype matcher can learn that float = double, and so on.
Sep 4. Compute relations among concepts at nodes. In the case of attributes, the node
matching problem is trandated into an ALC(D) formula, which is further checked for
its unsatisfiability using sound and complete procedures. Natice that in this case we
have to test for modal satisfiability, not propositional satisfiability. The system we use
is Racer [27]. From the example in Figure 9, trying to prove that C; in the tree B is
less general than Cg in the tree A, requires constructing the following formula:

((Electronicsa=Electronicss) /7 (Photoa=Photog) /7
(Camerasy=Camerass) /7 (Prices=Priceg) /7 (float=double)) /7
(Electronicss/7 (Camerasst/Photog) /7$Prices.float) /7
(Electronicsa/7 (Photoat/Cameras,) 77$Prices.double)

It turns out that the above formula is unsatisfiable. Therefore, C; in the tree B is
less general than Cs in the tree A. However, thisresult is not what the user expects. In
fact, bath Cs in the tree A and C; in the tree B describe prices of eectronic products,
which are photo cameras. The storage format of pricesin A and B (i.e., double and
float respectively) isnot an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would be to build
abstractions out of the datatypes, e.g., float, double, decimal should be abstracted to
type numeric, while token, name, normalizedString should be abstracted to type string,
and so on. However, even such abstractions do not improve the situation, since we
may have, for example, an ID of type numeric in the first schema, and a conceptually
equivalent 1D, but of type string, in the second schema. If we continue building such
abstractions, we result in having that numeric is equivalent to string in the sense that
they are both datatypes.

The last observation suggests that for the semantic matching approach to be cor-
rect, we should assume that al the datatypes are equivaent. Technicaly, in order to
implement this assumption, we should add corresponding axioms (e.g., float = double)
to the premises of Eq. 1. On the one hand, with respect to the case of not considering
datatypes (see, Section 7.2), such axioms do not affect the matching result from the
quality viewpoint. On the other hand, datatypes make the matching problem computa-
tionally more expensive by requiring to handle the quantification construct.

7.2 Ignoring datatypes

In this case, information about datatypes is discarded. For example, d&\Name, stringfi
becomes Name. Then, the semantic matching agorithm builds concepts of labels out
of attributes’ names in the same way as it does in the case of e ements’ names, and so
on. Finaly, it computes mapping elements using the algorithm of Section 6. A part of
the cNodesMatrix with reations holding between attributes for the example in Figure
9 is presented in Table 5. Notice that this solution allows a mappings computation
not only between the attributes, but also between attributes and elements.



Table 5. Attributes: the matrix of semantic relations holding between concepts of nodes (the
matching result) for Figure 9.

A B C4 C5 Ce C7
Cs = idk idk idk
Cy idk I idk idk
Cs idk idk = idk
Cs idk idk idk =

The task of determining mappings typically represents a first sep towards the ulti-
mate goal of, for example, data trandation, query mediation, agent communication,
and so on. Although information about datatypes will be necessary for accomplishing
an ultimate goal, we do not discuss this issue any further since in this paper we con-
centrate only on the mappings discovery task.

8. Efficient Semantic M atching

The node matching problem in semantic matching is a CO-NP hard problem, since it
is reduced to the validity problem for the propositional calculus. In this section we
present a set of optimizations for the node matching algorithm. In particular, we show
that when dealing with conjunctive concepts at nodes, i.e., the concept at node is a
conjunction (e.g., C; in the tree A in Figure 1 is defined as Asiana/7Languages,), the
node matching tasks can be solved in linear time. When we have digunctive concepts
at nodes, i.e., the concept a node contains both conjunctions and digunctions in any
order (eg., CsinthetreeB in Figure 1 is defined as Colleges/7(Artss/ Sciencesg)), we
use techniques alowing us to avoid the exponential space explosion which arises due
to the conversion of digunctive formulas into CNF. This modification is required
since al state of the art SAT deciders take CNF formulasin input.

8.1 Conjunctive concepts at nodes

Let us make some observations with respect to Table 4 (Section 6.2). The first obser-
vation is that the axioms part remains the same for al the tests, and it contains only
clauses with two variables. In the worst case, it contains 2" ny” ng clauses, where ny
and ng are the number of atomic concepts of labes occurred in contexta and contextg,
respectively. The second observation is that the formulas for testing less and more
generd relations are very similar and they differ only in the negated context formula
(e.g., in the test for less general relation contexts is negated). This means that Eq. 2
contains one clause with ng variables plus n, clauses with one variable. In the case of
digointness test context, and contextg are not negated. Therefore, formula Eq. 2 con-
tains na + ng clauses with one variable.



8.1.1 The node matching problem by an example

Let us suppose that we want to match Cyg in thetree A and Cy7 in thetree B in Figure
1. Therelevant semantic relations between atomic concepts of labds are presented in
Table 2. Thus, axiomsis as foll ows;

(coursea« classg)U(historya« historyg) U

@(medi eval \Umoder ng)U @(asia,Ueur opes) @

which, when translated in CNF, becomes:

(@cour seaUcl asss)U( courseaUicl asss) (@ history,Uhistoryg)U

(historyUhistoryg) U (@medieval \UZmoder ng) U (Pasi a,Ueur opes) “)

As from Sep 2, context, and contextg are constructed by taking the conjunction of
the concepts of labeds in the path from the node under consideration to the root.
Therefore, context, and contextg are:

courseaUhistory,Umedieval \Uasian (5)
classgUnistorysUmoder ngUeur opes (6)
while their negations are:

@cour se\Udhistory,Udmedieval , Udasian (7
@cl asssUhi storysUmoder nsUdeur opes (8)

So far we have concentrated on atomic concepts of labels. The propositional for-
mulas remain structurally the same if we move to conjunctive concepts at labels. Let
consider the following example:

1= Course of history Classes history =1
A 2 Medieval Asia Modemn Europe 2 B

Fig. 10. Two simple classifications (obtained by modifying, pruning the examplein Figure 1)

Suppose we want to match C, in thetree A and C; in the tree B in Figure 10. Axi-
oms required for this matching task are as follows. (coursea« classs)U
(historya« historyg)U(medieval /> moderng)U(asian™ europes). If we compare them
with those of Eq. 3 and Eq.4, which represent axioms for the above considered exam-
plein Figure 1, we find out that they are the same. Furthermore, as from Step 2, the
propositional formulas for context, and contexts are the same for atomic and for con-
junctive concepts of labels as long as they “globally” contain the same formulas. In
fact, concepts at nodes are constructed by taking the conjunction of concepts at |abels.
Splitting a concept of a label with two conjuncts into two atomic concepts has no ef-
fect on the resulting matching formula. The matching result for the matching tasks in
Figure 10 is presented in Table 6.



Table 6. The matrix of relations between concepts at nodes (matching result) for Figure 10.

A B C: C
Cj_ =

C =

> Iy

8.1.2 Optimizations

Tests for less and more general relations. Using the observations in the beginning
of Section 8.1 concerning Table 4, Eq. 2, with respect to the tests for less'more gen-
era relations, can be represented as follows:

Axioms Context a4 —Contextp
y N\ ~ —— N
n*km nxm nkm n m (9)

A (masvBoA N\ (Apv-BpAa A (mapv-BOA A A, AN -Bj
q=0 w=0 v=0 i=1 j=1 ’

where n is the number of variables in contexta, mis the number of variables in con-
texts. The A’'s belong to context,, and the B;'s belong to contexts. s k, p are in the
[0..n] range whilet, |, r arein the [0..m] range. g, w and v define the number of par-
ticular clauses. Axioms can be empty. Eq. 9 is composed of clauses with one or two
variables plus one clause with possibly more variables (the clause corresponding to
the negated context). The key observation is that the formula in Eq. 9 is Horn, i.e.,
each clause contains & most one positive literal. Therefore, its satisfiability can be de-
cided in linear time by the unit resolution rule [9]. Natice, that DPLL-based SAT
solversrequire quadratic timein this case [47].

In order to understand how the linear time a gorithm works, let us prove the unsat-
isfiability of Eq. 9 in the case of matching Cys in the tree A and Cy7 in the tree B in
Figure 1. Inthis case, Eq. 9isas follows:

(DeourseaUcl asss)U( cour seaUicl asss) (@ history,Uhistoryg)U
(history,Ughistoryg) U (@medieval \UZmoder ng)U (Pasi a,Udeur opes)U
course,UhistorysUmedieval , Uasia U
(Dcl asssUhi storygUmoder ngUdeur opeg)

(10)

In Eq.10, the variables from context, are written in bold face. First, we assign true to
al unit clauses occurring in Eq. 10 positively. Notice these are all and only the
clauses in contexts. This alows us to discard the clauses where context, variables oc-
cur positively (in this case: coursesUdclasss, history,Udhistorys). The resulting for-
mulaisas follows:
classsUhi storysU@moder ngUgeur opesU
(Dcl asssUhi storygUmoder ngUdeur opes)

Eq. 11 does not contain any variable derived from context,. Notice that, by assign-
ing true to classg, historys and false to moderng, europes we do not derive a contra-

(11)



diction. Therefore, Eqg. 10 is satisfiable. In fact, a (Horn) formula is unsatisfiable if
and only if the empty clause isderived (and it is satisfiable otherwise).

Let us consider again Eq. 11. For this formulato be unsatisfiable, al the variables
occurring in the negation of contexts (@classsUghistorysU@moder ngUdeuropes in
our example) should occur positively in the unit clauses obtained after resolving axi-
oms with the unit clausesin contexta (classs and historyg in our example). For this to
happen, for any B; in contextg there must be a clause of form @AUB; in axioms, where
A is aformula of contexta. Formulas of the form QAL'JBJ- occur in Eq. 9if and only if
we have the axioms of form A = B;and A=B;. These considerations suggest the fal-
lowing algorithm for testing satisfiability:

- Step 1. Create an array of size m. Each entry in the array stands for one B; in Eq. 9.
- Step 2. For each axiom of type Ai=B; and A=B; mark the corresponding B;.
- Step 3. If al the B;'s are marked, then the formulais unsatisfiable.

To complete the analysis, et us now suppose that we have not “europe’, but “ex-
cept europe’ as a node of the tree depicted in Figure 1. This means that contextg con-
tains the negated variable Peuropes. Eq. 10 in thiscaseis rewritten as follows:

(DcoursexUclasss)U( course,Udcl asss) U(@ historyaUhistoryg)U
(history,U@historys) U (@medieval s\U@moder ng)U (Dasi a, Udeur opes)U
course,Uhistory,Umedieval , Uasia, U
(Dcl asssUhi storysUgmoder ngUeur opes)

(12)

Suppose that we have replaced all the occurrences of @europes and europes in the
formula with europe,s and @europe.s respectively. In fact, we replace the variable
with the new one which represents its negation. Notice that this replacement does not
change the satisfiability properties of the formula. Truth assignment satisfying the
new formulawill satisfy the original formula after inverting the truth value of the new
variable (europe.;s in our example). Notice also that the replacement changed the
clause with europes variable in axioms (@asiaUeuropes in Eq. 13).

(DeourseaUcl asss)U( cour seaUdicl asss) (D history,Uhistoryg)U
(history,Ughistoryg) U (@medieval \UZmoder ng)U (Basi ax Ueur ope,s)U
coursesUhistorysUmedieval \Uasias U
(Dcl asssUhi storygUdmoder ngUdeur ope,s)

Let usassign to true the unit clauses occurring in Eq. 13 positively. This alows us to
discard anumber of clauses. A smplified formulais depicted as Eq. 14.

(13)

classsUhi storysU@moder ngUeur opesU
(Dcl asssUhi storygUdmoder ngUdeur ope,s)

This formula is satisfiable by assigning classs, historys, europes to true and mod-
erng to false. Therefore, less genera relation does not hold between the concept at
node Asia and the concept at node Except Europe.

In order to construct an optimized dgorithm for determining satisfiability of Eq. 13
let us compare Eq. 10 and Eq. 13. The parts of the formula representing contexts are
the same. The differences are in axioms part of the formula and they are introduced

(14)



by a variable replacement. Let us analyze how the replacement of the variable with its
negations influences various classes of clausesin axioms, see Table 7.

Table 7. The correspondence between axioms and clauses.

ALCB; | BLCA

Axioms A=B, A=B, A" B
The classes of propositiona clauses - . .
With two variables @AUB, AUZB, OAUDB;
The classes of clauses after replacement . . .
of A; with its negation A AiUB; | DA, | AUDE;

The classes of clauses after replacement
of B; with its negation By;
The dlasses of clauses after replacement of A and B
with their negations A; and By; respectively

@AUZB,; | AUB, @AUB,,

AUZB; | @A,UB A, UB;

Let us concentrate on three classes of propositional clauses depicted in the second
row of Table 7. As from Eq. 9, we have only these classes of clauses in axioms. The
axioms from which the particular class of clauses can be derived are described in the
first column. Rows 2-5 demonstrate how the replacement of variables with its nega-
tion influences the clause. The first observation from Table 7 is that the new class of
clauses (A l'JBJ-) isintroduced in axioms. The variables derived from both context, and
contextg occur in these clauses positively. This means that the clauses of form AUBJ-
are discarded from the formula after unit propagation and cannot influence its satisfi-
ability properties. The second observation is that al other clausesin Eq. 13 belong to
the same classes as onesin Eq. 10. Therefore, the general observation made for Eq. 10
(namely, the formula is satisfiable if and only if there are clauses @AUB; in axioms

for any B; in contextg) holds for Eq. 13. Asfrom Table 7, we have the clauses @A UB;
in Eq. 13in three cases:

- Thereare axioms A, = B; and ALB;, where A and B; occur in contexts of the
original formula positively.

- Thereare axioms Ay =B; and Bi= A, where A and B; occur in contexts of the
original formulanegativey.

- There are axioms A" B;, where A occurs in contexta of the original formula
positively and B; occursin contextg of the original formula negatively.

These considerations suggest the following dgorithm for testing the satisfiability (no-
tice Stepl and Step 3 remain the same as in the previous version):

- Step 1. Create an array of size m. Each entry in the array stands for one B; in Eq. 9.
- Step 2a If A; and B; occur positively in contexta and contextg respectively, for each
axiom A=B; and A.=B; mark the corresponding B;.

- Step 2b. If A; and B; occur negetively in contexta and contexts respectively, for each
axiom A=B; and B;= A mark the corresponding B;.



- Step 2c. If B; occurs negatively in contextg and A occurs positively in contexta for
each axiom A" B; mark the corresponding B;.

- Step 3. If al the B;'s are marked, then the formulais unsatisfiable.

The pseudo code of the optimized algorithm is presented in Figure 11.

1155. if (contexta and contextg are conjunctive)

1156. i sSLG=f ast Hor nUnsat Check (context, contextg axionms, “&7~,"J7);
1157. i sMG=f ast Hor nUnsat Check (contexts, contexta axioms, "I, “E£7);
1158. else

1500. bool ean fast HornUnsat Check(String context, neg_context, axions,
rel, neg_rel)
1510. int nrget NunOf Var (String neg_context);
1520. bool ean array[ni;
1530. for each axiomin axi oms
1540. String A= getFirstVariabl e(axiom;
1550. String Bj= get SecondVari abl e(axi om;
1560. int j=getNunberl|nContext(B);
1570. if((occurs_positevely (A, context))&&
(occurs_positevely (Bj, neg_context)))
1580. i f((get AType(axi om)="=")]|| (get AType(axi om)=rel))
1590. array[j]=true;
1600. if ((occurs_negatively (A, context))&&
(occurs_negatively (Bj, neg_context)))
1610. i f((get AType(axi om)="=")]|| (get AType(axi on) =neg_rel))
1620. array[j]=true;
1630. if ((occurs_positevely (A, context))&&
(occurs_negatively (Bj, neg_context)))
1640. i f (get AType(axi om ="~")
1650. array[j]=true;
1660. for (i=0; i<n i++)
1670. if (larray[i])
1680. return fal se;
1690. return true;

Fig. 11. Optimization pseudo code of tests for less and more generd relations

Thus, nodeMat ch can be modified asin Figure 11 (the numbers on the left indi-
cate where the new code must be positioned). f ast Hor nUnsat Check implements
the three steps above. Step 1 is performed in lines (1510-1520). Then, aloop on axi-
oms (lines 1530-1650) implements Step 2. The final loop (lines 1660-1690) imple-
ments Step 3.

Digointness test. Using the same notation as before in this section, Eq. 2 with respect
to the digointness test can be represented as follows:

Axioms Context 5 Contextp
-~ "\ - o~ N
LR T, TR L KT m. (15)

ez
N (—asvBoOA N (Apv-Bpa A (mAV=Ba)a A A A N B
q=0 w=0 v=0 =1 J=1



For example, the formula for testing digointness between Cys in the tree A and Cy7 in
thetree B in Figurelisasfallows:

(DcoursexUclasss)U( course,Udicl asss) (@ history,Uhistorys)U
(history,U@historyg) U (@medieval \UZmoderng)U (Pasia,Udeuropes)U  (16)
course,Uhistory,Umedieval , Uasias U classsUnistorysUmoder ngUeur opes

Eqg. 16 is Horn, and thus, similarly to Eq. 10, the satisfiability of this formula can
be decided by the unit propagation rule. After assigning true to al the variables in
context, and propagating the results we obtain the following formula:

classgUnistorysU@moder nsUeur opesU classsUhistorysUmoderngUeuropes — (17)

If we further unit propagate classs and historyg (this means that we assign them to
true), then we obtain the contradiction modernsU@moder nsUeur opesUdeur opes.
Therefore, the formula is unsatisfiable. This contradiction arises because (@medie-
val sU@moderng) and (Dasia,Udeuropes) occur in Eq. 16, which, in turn, are derived
(as from Table 4) from the digointness axioms moderng® medieval, and
asian™ europes. In fact, al the clausesin Eqg. 15 contain one positive literal except for
the clauses in axioms corresponding to digointness relations. Thus, the key intuition
hereisthat if there are no digointness axioms, then Eq. 15 is satisfiable. However, if
there is a digointness axiom, atoms occurring there are also ensured to be either in
contexta or in contexts, hence, Eq. 15 is unsatisfiable. Therefore, the optimization
consists of just checking the presence/absence of digointness axioms in axioms.

To complete the analysis suppose that we have negated variable in contextg in the
same fashion as described in the example with negations given before in this section.
Then, Eq. 16 can be rewritten as follows:

(DeourseaUclasss)U( cour seUicl asss) (@ history,Uhistoryg)U
(history,Ughistoryg) U (@medieval \UZmoderng)U (Pasia,Udeuropes)U  (18)
coursexUhistory,Umedieval , Uasiaa U classsUhistorysUmoder nsUZeur opes

As in the case of less general relation all the occurrences of the negated variable
are replaced with anew variable representing its negation (i.e., @europes and europes
arereplaced by europe.s and @europe.g respectively), see Eq. 19.

(DeourseaUcl asss)U( cour seaUcl asss) (D history,Uhistoryg)U
(historyUghistoryg) U (@medieval s\UZmoder ng)U (Basian Ueur ope,s)U (19)
coursexUnistory,Umedieval , Uasian U classsUhistorygUmoder nsUeur opens

After the unit propagation of the variables derived from context, we obtain

classsUhistorysU@moder ngUeur ope,gU classsUnistorygUmoderngUeurope,s  (20)

Eq. 20 is satisfiable. This means that the concept at node Asia is not digoint with the
concept at node Except Europe. The replacement introduces the new class of clauses
AUB,. However, such clauses are discarded after the unit propagation, and therefore,
do not influence the satisfiability of the formula. Asfrom Table 7, all other clausesin-
troduced after the replacement belong to the same classes as ones in Eq. 16. This
means that the major observation made in this section, namely the fact that the satisfi-



ability of Eq. 16 can be decided by checking the presence/absence of the clauses of

form QAUQBJ- holds for Eq. 19. As from Table 7, we have the clauses of form

@AUZB, in Eq. 19 in the following three cases:

- There are axioms of form A”B;, where both A and B; occur in contexts of the
original formula positively.

- There are axioms of form B;=A and A=B;, where A, occurs negatively in contexta
of the original formulaand B; occurs positively in contextg of the original formula

- There are axioms of form A=B; and A=B; where A occurs positively in contexta
of the original formulaand B; occurs negatively in contextg of the original formula.

Thus, the pseudo code of nodeMat ch should be modified as shown in Figure 12.

1105.if (contexta and contextg are conjunctive)

1106. isQOpposite=optim zedUnsat Test For Di sj oi nt ness (axi ons, contexta,
cont extg);

1107. el se

1300. optim zedUnsat Test For Di sj oi nt ness (axi ons, context, contextg);
1310. for each axiomin axions
1320. String A= getFirstVariabl e(axion;
1330. String Bj= get SecondVari abl e(axi on);
1340. if ((occurs_positively (A, context,))&:
(occurs_positively (Bj, contextg)))
1350. if (getAType(axi om)=""")
1360. return true;
1370. if ((occurs_negatively (A, context,) )&
(occurs_positively (Bj, contextg)))
1380. if((getAType(axiom)="=")|| (get AType(axi om=" "))
1390. return true;
1400. if ((occurs_positevely (A, context,))&
(occurs_negatively (Bj, contextg)))
1410. if((get AType(axi om)="=")]|| (get AType(axi om) =" £"))
1420. return true;
1430. return fal se;

Fig. 12. Digointness test optimization pseudo code

opti m zedUnsat Test For Di sj oi nt ness check three conditions listed
above. The first condition is checked in lines 1340-1360. In lines 1370-1390 the sec-
ond condition is checked. Finally, thethird condition is checked in lines 1400-1420.

8.2. Disjunctive concepts at nodes
8.2.1 The node matching problem by an example

Now, we alow for the concepts at nodes to contain conjunctions and disunctions in
any order. Suppose, we want to match Cs in thetree A and Cs inthetreeB in Figure 1.
Therelevant part of cLabsMat ri x isshown in Table 8.



Table8. cLabsMat ri x: matrix of relations among the atomic concepts of labels.

A B Classes | Mechanics | Optics | Statistics | Dynamics | Kinematics

Courses =
Biology

Zoology
Botany

Neurobiology
Genetics
Physiology

Asfrom Table 4, the axiomsis as follows:
(coursen « classg) (21)
Eqg.21 in CNF then becomes:
(Dcoursen U classs) U (course,U @classs) (22)
As from Step 2, context, and contextg are;
classs U (mechani cssUopti cssUther modynamicss)U

(stati cssUdynamicss Ukinematicsg) (23)
course, U (biol ogyAl'J zool ogyAUbotanyA) U 24)
(neurobiologya UgeneticsaU physiol ogya)
The negations of context, and contextg, in turn, are:
@ class; U (@mechani cs;UdiopticssUZthermodynamicss) U 25)
(Dstati cssUBdynami cssUDki nemati Css)
@ course, U (@biologyUdizool ogyUdbotany,) U (26)

(@neur obiol ogy,UZgeneti csaU @physiol ogya)
The matching result for thistask is presented in Table 9.

Table 9. cNodesMat ri x: matrix of relations among the concepts at nodes (matching result).

A B C C, Cs
C = idk idk
C idk idk idk
Cs idk idk idk

8.2.2 Optimizations

Asfrom Table 4, axioms is the same for all the tests. However, context, and contextg
may contain any number of disunctions. Some of them are coming from the concepts



of labels, while others may appear from the negated context, or contexts (e.g., see
tests for less'more generd relations). Thus, for ingance, as from Table 4 in case of
test for less general relation we obtain the following formula:

(Deourses U classs)U(courseaUdcl asss)U (mechani cssUopticssU
thermodynamicsg) U (staticssUdynamicss Ukinematicss) U (@biologya U (27)
@zool ogyUdbotany,) U (@neur obiol ogy,UZgenetics,U @physiology,))

With digunctive concepts at nodes, Eq. 2 is a full propositiona formula and no
hypothesis can be made on its structure. As a consequence, its satisfiability must be
tested using a standard DPLL SAT solver. Thus, for ingance, CNF conversion of Eq.
27 isasfollows:

(Dcourse, U classs) U (courseaU @elasss) U (mechani cssUopti css Uther mody-
namicss) U (stati cssUdynamicss Ukinematicsg) U ((@ courses U @hiol-
ogyaUgneur obiol ogy,)U (cour seaUiol ogy,Udigeneticsa)U (& course, U
@hiol ogyAUQphys ology,)U (QcourseAuzzool ogyAUQneur obiology,)U(@ (28)
course, U @zool ogyAUQgenetl cs)U (QcourseAUQZOol ogyAUQphys ology,)U
(@ course, U @botanyAUQneurobl ology,)U (@courseAUQbotanyA UZgenet-
icsa) U (@course, U @botany,Udphysiol ogy,))

In order to avoid the space explosion, which may arise when converting a formula
into CNF (seefor ingance Eq. 28), we apply a set of structure preserving transforma-
tions [41,19]. The main idea is to replace digunctions occurring in the original for-
mula with newly introduced variables and explicitly state that these variables imply
the subformulas they substitute. Consider for instance Eq. 27. We obtain:

(Deourse, U classs) U (course,U @elasss) U (mechan-
i cssUopti cssUther modynamicss) U(stati cssUdynamicss Ukinematicss) U
new; UnewsU( new,® @biol ogy,Udizool ogy.Udcar ) U
(news® @neurobiol ogyaUdigenetics,U @physiol ogy,)

(29)

where new; and news stand for newly introduced variables. Eqg. 29 is converted into
CNF as follows:

(Deourse, U classs) U (course,U @elasss) U (mechan-
icssUopticssUther modynamicss) U(stati csBUdynam css Ukinematicss) U
new; Unew,U(@new, U @hiol ogyAU®zooI ogyUdicar,) U
(@new,Udneur obiol ogyUgenetics,U @physiol ogy,)

(30)

Notice that the size of the propositional formula in CNF grows linearly with re-
spect to number of digunctions in origina formula. To account for this optimization
in nodeMat ch al calls to convert TOCNF are replaced with calls to opti -
m zedConver t TOCNF, (see Figure 13):

1120. formul al nCNF=opti m zedConvert ToCNF(f or nul a) ;
1170. formul al nCNF=opti m zedConvert TOCNF(f or nul a) ;

1200. formul al nCNF=opti m zedConvert TOCNF(f or nul a) ;



Fig. 13. The CNF conversion optimization pseudo code

9. Evaluation

In this section, we present the performance and qudlity evaluation of the matching
system we have implemented, caled S-Match. In particular, we evaluate basic and
optimized versions of our system, called (S-Matchg) and (S-Match) respectively,
against three state of the art matchers, namely Cupid [32], COMA [11]°, and SF [35]
as implemented in Rondo [36]. All the systems under consideration are fairly compa-
rable because they are all schema-based. They differ in the specific matching tech-
niques they use and in the way they compute mappings.

9.1. Evaluation set-up

The evaluation was performed on seven matching tasks from different application
domains, see Table 10. There are three matching tasks from a business domain
(#1,3,5). The firgt business example (#1) describes two company profiles: a Standard
one (mini) and Yahoo Finance (mini), while, #5, represents their full versions. The
third business example (#3) deals with BizTalk® purchase order schemas. There is
one matching task from an academy domain (#2). It describes courses taught at Cor-
nell University (mini) and at the University of Washington (mini). Finaly, there are
three matching tasks on general topics (#4,6,7) as represented by the well-known web
directories, such as Google®, Yahoo®, and Looksmart®. Table 10 provides some in-
dicators of the complexity of these test cases'*.

Table 10. Someindicators of the complexity of the test cases.

# M atching task Max. depth # nodes #labels Conceptsat nodes
Yahoo(mini)- Conjunctive
Standard(mini) 22 10716 22/45 Disjunctive
2 | Cornel-Washington 33 34/39 62/64 Conjunctive
Digjunctive
Conjunctive
3 CIDX - Excel 3/3 34/39 56/58 Disiunctive
Conjunctive
4 L ooksmart-Yahoo 10/8 140/74 222/101 Disjunctive

9 We thank to Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with Cupid and
COMA. In the eval uation we use the version of COMA described in [11]. A newer version of
the system COMA++ exists but we do not haveit.

10 http://www.mi crosoft.com/bi ztal k/

1 http://www.google.com/Top/

12 http://dir.yahoo.com/

13 http://www.looksmart.com/

14 Source files and description of the schemas tested can be found at our project web-site, ex-
periments section: http://www.dit.unitn.it/~accord/



http://www.microsoft.com/biztalk/
http://www.google.com/Top/
http://dir.yahoo.com/
http://www.looksmart.com/
http://www.dit.unitn.it/~accord/

Conjunctive
5 Yahoo-Standard 3/3 333/115 965/242 Disjunctive
Conjunctive
6 Google-Yahoo w1 561/665 722/945 Disunctive
Conjunctive
7 Google-Looksmart 11/16 706/1081 1048/1715 Disjunctive

The reference mappings (also called expert mappings) for some of these problems
(namely for the tasks #1,2,3) were established manually. Then, the results computed
by the systems have been compared with expert mappings. It is worth noticing that
the task of creation of expert mappings is an error-prone and a time consuming one.
Even if for the moment of writing this paper we have created expert mappings for the
biggest matching tasks (#6,7) of Table 10, we do not report these findings in this pa-
per. Addressing in full detail the emerged issues aong that process as well as the
matching results achieved is out of scope of this paper, see for some details [3,22].
Thus, in this evaluation study we focus mostly on the performance characteristics of
S-Match, involving large matching tasks, namely schemas with hundreds and thou-
sands of nodes. Natice, scalability properties of matching systems is among the most
important problems of schema matching (in general) these days, see eg., [7,12].
Quality characteristics of the S-Match results which are presented here address only
medium size schemas. We acknowledge that a large-scale quality evaluation is a so of
high importance. However, we view it as a separate direction, requiring (beyond some
preliminary results of [3,22]) further in-depth investigations. Thus, we pose it as fu-
ture work.

There are three further observations that ensure a fair (qualitative) comparative
study. The first observation is that Cupid, COMA, and Rondo can discover only the
mappings which express similarity between schema elements. Instead, S-Match,
among others, discovers the digointness relation which can be interpreted as strong
dissimilarity in terms of other systems under consideration. Therefore, we did not take
into account the digointness relations when specifying the expert mappings. The sec-
ond observation is that, since S-Match returns a matrix of relations, while al other
systems return a list of the best mappings, we used some filtering rules. More pre-
cisely we have the following two rules: (i) discard al the mappings where the relation
isidk; (ii) return aways the core relations, and discard rdations whose existence is
implied by the core relations. Finally, whether S-Match returns the equivaence or
subsumption relations does not affect the quality indicators. What only mattersis the
presence of the mappings standing for those relations.

As match quality measures we have used the following indicators. precision, re-
call, overall, and F-measure. Precision varies in the [0,1] range; the higher the value,
the smaller the set of wrong mappings (false positives) which have been computed.
Precision is a correctness measure. Recall varies in the [0,1] range; the higher the
value, the smaller the set of correct mappings (true positives) which have not found.
Recall is a completeness measure. F-measure varies in the [0,1] range. The version
computed here is the harmonic mean of precision and recall. It is agloba measure of
the matching quality, growing with it. Overall is an estimate of the post match efforts
needed for adding false negatives and removing false positives. Overall varies in the
[-1, 1] range; the higher it is, the less post-match efforts are needed. As a performance
measure we have used time. It estimates how fast systems are when producing map-



pings fully automatically. Time is very important for us, since it shows the ability of
matching systems to scale up.

In our experiments each test has two degrees of freedom: directionality and use of
oracles. By directionality we mean here the direction in which mappings have been
computed: from the first schema to the second one (forward direction), or vice versa
(backward direction). We report the best results obtained with respect to directional-
ity, and use of oracles alowed. We were not able to plug a thesaurus in Rondo, since
the version we haveis standalone, and it does not support the use of external thesauri.
Thesauri of S-Match, Cupid, and COMA were expanded with terms necessary for a
fair competition (e.g., expanding uom into unitOfMeasure, a complete list is available
at the URL in footnote 14).

All the tests have been performed on a P4-1700, with 512 MB of RAM, with the
Windows X P operating system, and with no applications running but a single match-
ing system. The systems were limited to allocate no more than 512 MB of memory.
All the tuning parameters (e.g., thresholds, combination strategies) of the systems
were taken by default (e.g., for COMA we used NamePath and Leaves machers
combined in the Average drategy) for al the tests. S-Match was also used in default
configuration, e.g., threshold for string-based matchers was 0.6. This threshold has
been defined after experimentation on several schema matching tasks (see for details
the URL in footnote 14). Findly, al the element level matchers of the third approxi-
mation level (e.g., gloss-based matchers) were not involved in the evaluation since |
the matching tasks under consideration were successfully resolved by the matchers of
Table 1 which belong to the first and the second approximation levels; see [22] for the
preliminary evaluation results of matchers beonging to the third approximation level
as well asfor the tasks where they are useful.

9.2. Evaluation results

We present the time performance results for al the tasks of Table 10, while quality
results, as from the previous discussion are possible to estimate only for some of the
matching tasks (#1,2,3). The eva uation results for the matching problems #1,2,3 are
shown in Figure 14.

Yahoo Finance (mini) - Standard (mini) S€C

1,0 20,0
0,9 1 + 18,0
0,8 1 T 16.0
0,7 1 W / T 14,0
0,6 1 ] T 12,0
0,5 - ] 1 10,0
0.4 1 T80
0,3 1 \ T 6,0
0,2 { 14,0
0,1 1 T 20
0,0 : T ; T 0,0
Rondo Cupid COMA S-Matchg  S-Match
I Precision —Recall E=3Overall —F-measure ——Time

Fig.14.1 Eva uation results: Y ahoo Finance (mini) vs. Standard (mini), test case #1
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Fig. 14.2 Evaluation results: Cornell (mini) vs. Washington (mini), test case #2

For example, in Figure 14.2, since all the labels at nodes in the given test case were
correctly encoded into propositional formulas, al the quality measures of S-Match
reach their highest values. In fact, as discussed before, the propositional SAT solver is
correct and complete. This means that once the element level matchers have found all
and only the mappings, S-Match will return al of them and only the correct ones.

BizTalk schemas: CIDX vs. Excel sec.
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Fig. 14.3 Evaluation results: CIDX vs. Excedl, test case #3

For a pair of BizTalk schemas. CIDX vs. Excd, S-Match performs as good as
COMA and outperforms other systems in terms of quality indicators. Also, the opti-
mized version of S-Match works more than 4 times faster than COMA, more than 2
times faster than Cupid, and as fast as Rondo.

The time performance results obtained for the matching tasks #4,5,6,7 of Table 10
are presented in Figure 15. Cupid went out of memory on al the tasks. Therefore, we
present the results for other systems.
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Fig. 15.1. Execution times: Looksmart vs. Yahoo, test case #4

In the case of Looksmart-Y ahoo matching problem the trees contain about hundred
nodes each. S-Match works about 18% faster than S-Matchg and about 2% 9 ower
than COMA. SF, in turn, works about 3 times faster than S-Match. The relatively
poor improvement (18%) occurs because our optimizations are implemented in a
straightforward way. More precisely, on small trees (e.g., test case #4) a big constant
factor’> dominates the growth of all other components in S-Match computational
complexity formula.

On Yahoo-Standard matching problem S-Match works about 40% faster than S
Matchg. It performs 1% faster than COMA and about 5 times slower than SF. The
relatively small improvement in this case can be explained by noticing that the maxi-
mum depth in both treesis 3 and that the average number of labels at nodesis about 2.
The optimizations cannot significantly influence the system performance.

Yahoo-Standart
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Fig. 15.2. Execution times: Y ahoo vs. Standard, test case #5

The next two matching problems are much bigger than the previous ones. They
contain hundreds and thousands of nodes. On these trees SF went out of memory.
Therefore, we provide the results only for the other systems. In the case of Google-
Y ahoo matching task S-Match is more than 6 times faster than S-Matchg. COMA per-
forms about 5 times dlower than the optimized version. These results suggest that the
optimizations described in this paper are better suited for big trees. In the case of the

15 Thisisadso known in the literature as an implementational constant.



biggest matching problem, involving Google-Looksmart, S-Match performs about 9
times faster than COMA, and about 7 times faster than S-Matchg.
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Fig.15.3. Execution times: Google vs. Y ahoo, test case #6
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Fig. 15.4. Execution times: Google vs. Looksmart, test case #7

Having considered matching tasks of Table 10, we conclude that S-Match performs
(in terms of execution time) slightly slower than COMA and SF on the schemas with
one up to three hundred of nodes (see, Figures 15.1-15.2). At the ssmetime, S-Match
is considerably faster on the schemas with more than five hundreds nodes (see, Fig-
ures 15.3-15.4), thereby indicating system scal ability.

9.3. Evaluation summary

Quality measures. Since most matching systems return similarity coefficients, rather
than semantic relations, our qualitative analysis was based on the measures developed
for those systems. Therefore, we had to omit information about the type of relations
S-Match returns, and focus only on the number of present/absent mappings. We to-
tally discarded from our considerations the digointness relation, however, its value
should not be underestimated, because this relation reduces the search space.

We pose a large-scal e qualitative evaluation of the system as future work. Thus, in
our evaluation we have focused only on the overal qualitative system results, hence,
not discussing exhaustively element level matchers, e.g., by showing impact of each
of them on the matching results (see, for some preliminary results [22]). Also, it is
worth mentioning that, eg., string-based matchers, have aready been extensvely
evaluated in [11,44].



Performance measures. Time is an important indicator, because when matching in-
dustrial-size schemas (e.g., with hundreds and thousands of nodes, which is quite
typical for e-business applications), it shows scalability properties of the matchers and
their potential to become industrial-strength systems. It is also important in web ap-
plications, where some weak form of rea time performanceis required (to avoid hav-
ing a user waiting too long for the system respond).

10. Related Work

At present, there exists a line of semi-automated schema matching systems, see, for
instance [5,10,13,15,32,30,35,39,49,28,46]. A good survey and a classification of
matching approaches up to 2001 is provided in [42], an extension of its schema-based
part and a user-centric classification of matching systems is provided in [43], while
the work in [14] considers both [42, 43] as well as some other classifications.

In particular, for individual matchers, [43] introduces the following criteria which
allow for detailing further (with respect to [42]), the lement and structure level of
matching: syntactic techniques (these interpret their input as a function of their sole
structures following some clearly stated algorithms, e.g., iterative fix point computa-
tion for matching graphs), external techniques (these exploit external resources of a
domain and common knowledge, e.g., WordNet [37]), and semantic techniques (these
use formal semantics, e.g., model-theoretic semantics, in order to interpret the input
and justify their results).

The distinction between the hybrid and composite matching algorithms of [42] is
useful from an architectural perspective. [43] extends this work by taking into account
how the systems can be distinguished in the matter of considering the mappings and
the matching task, thus representing the end-user perspective. In this respect, the fol-
lowing criteria are proposed: mappings as solutions (these systems consider the
matching problem as an optimization problem and the mapping isa solution to it, e.g.,
[13,35]); mappings as theorems (these systems rely on semantics and require the
mapping to satisfy it, e.g., the approach proposed in this paper); mappings as likeness
clues (these systems produce only reasonable indications to a user for selecting the
mappings, e.g., [32,11]).

Let us consider the closest to S-Match schema-based state of the art systems in
light of the above criteria.

Rondo. The Similarity Flooding (SF) [35] approach, as implemented in Rondo [36],
utilizes a hybrid matching agorithm based on the ideas of similarity propagation.
Schemas are presented as directed labeled graphs. The dgorithm explaits only syntac-
tic techniques at the element and structure levd. It starts from the string-based com-
parison (common prefixes, suffixes tests) of the nodes' labels to obtain an initia map-
ping which is further refined within the fix-point computation. SF considers the
mappings as a solution to a clearly stated optimization problem.

Cupid. Cupid [32] implements a hybrid matching algorithm comprising syntactic
techniques at the element (e.g., common prefixes, suffixes tests) and structure level
(e.g., tree matching weighted by leaves). It also exploits external resources, in particu-
lar, a precompiled thesaurus. Cupid falls into the mappings as likeness clues category.



COMA. COMA [11] is a composite schema matching system which explaits syntac-
tic and external techniques. It provides a library of matching a gorithms; a framework
for combining obtained results, and a platform for the evaluation of the effectiveness
of the different matchers. The matching library is extensible, it contains 6 e ementary
matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them imple-
ment string-based techniques (affix, n-gram, edit distance, etc.); others share tech-
niques with Cupid (tree matching weighted by leaves, thesauri look-up, etc.); reuse-
oriented is a completely novel matcher, which tries to reuse previously obtained re-
sults for entire new schemas or for its fragments. Distinct features of COMA with re-
spect to Cupid, are a more flexible architecture and a possibility of performing itera-
tions in the matching process. COMA falls into the mappings as likeness clues
category.

Reduction of semantic heterogeneity is typicaly performed in two steps. So far,
we have concentrated on the first step, namely on determining correspondences be-
tween semanticaly related entities. The second step is the ultimate goal of the match-
ing exercise, which can be data trandation, query answering, and so on. Here, map-
pings are taken as input and are analyzed in order to generate, e.g., query expressions
that automatically trand ate/exchange data instances between the information sources,
see, for example, [16,48]. Notice that taking as input semantic relations, instead of
coefficients in the [0,1] range, potentialy enables, e.g., data translation systems to
produce better results, since, for example, in such systems as Clio [16], thefist stepis
to interpret the correspondences by giving them a clear semantics.

11. Conclusions

We have presented a new semantic schema matching algorithm and its optimizations.
Our solution builds on top of the past approaches at the element level and introduces a
novel (with respect to schema matching) techniques, namely model-based techniques,
at the structure level. We conducted a comparative evaluation of our approach imple-
mented in the S-Match system against three state of the art systems. The results em-
pirically prove the strength of our approach.

Future work includes devel opment of an iterative and interactive semantic match-
ing system. It will improve the quality of the mappings by iterating and by focusing
user's attention on the critica points where higher input is maximally useful. S
Match works in a top-down manner, and hence, mismatches among the top level ele-
ments of schemas can imply further mismatches between their descendants. There-
fore, next steps include development of a robust semantic matching algorithm. Also,
we are planning to extend the semantic matching approach by computing the overlap-
ping relation (with the intersection semantics). This relation might be useful when,
e.g., input schemas encode a domain of interest at different levels of details. Finally,
we are going to develop atesting methodology which is able to estimate quality of the
mappings between schemas with hundreds and thousands of nodes. Initial seps have
already been done; see for details [3]. Here, the key issue is that in these cases, speci-
fying expert mappings manualy is (often) neither desirable nor feasible task. Com-
parison of matching agorithms on large rea-world schemas from different applica-
tion domains will also be performed extensively.
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